On powers of Stieltjes moment sequences, I

نویسنده

  • Christian Berg
چکیده

For a Bernstein function f the sequence sn = f(1)·. . .·f(n) is a Stieltjes moment sequence with the property that all powers sn, c > 0 are again Stieltjes moment sequences. We prove that sn is Stieltjes determinate for c ≤ 2, but it can be indeterminate for c > 2 as is shown by the moment sequence (n!)c, corresponding to the Bernstein function f(s) = s. Nevertheless there always exists a unique product convolution semigroup (ρc)c>0 such that ρc has moments sn. We apply the indeterminacy of (n!) c for c > 2 to prove that the distribution of the product of p independent identically distributed normal random variables is indeterminate if and only if p ≥ 3. 2000 Mathematics Subject Classification: primary 44A60; secondary 60E07.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On powers of Stieltjes moment sequences, II

We consider the set of Stieltjes moment sequences, for which every positive power is again a Stieltjes moment sequence, we and prove an integral representation of the logarithm of the moment sequence in analogy to the Lévy-Khintchine representation. We use the result to construct product convolution semigroups with moments of all orders and to calculate their Mellin transforms. As an applicatio...

متن کامل

The classical moment problem and generalized indefinite strings

We show that the classical Hamburger moment problem can be included in the spectral theory of generalized indefinite strings. Namely, we introduce the class of Krein–Langer strings and show that there is a bijective correspondence between moment sequences and this class of generalized indefinite strings. This result can be viewed as a complement to the classical results of M. G. Krein on the co...

متن کامل

A transformation from Hausdorff to Stieltjes moment sequences

We introduce a non-linear injective transformation T from the set of non-vanishing normalized Hausdorff moment sequences to the set of normalized Stieltjes moment sequences by the formula T [(an)]n = 1/(a1 · . . . · an). Special cases of this transformation have appeared in various papers on exponential functionals of Lévy processes, partly motivated by mathematical finance. We give several exa...

متن کامل

Stieltjes Moment Sequences and Positive Definite Matrix Sequences

For a certain constant δ > 0 (a little less than 1/4), every function f : N0 → ]0,∞[ satisfying f(n)2 ≤ δf(n − 1)f(n + 1), n ∈ N, is a Stieltjes indeterminate Stieltjes moment sequence. For every indeterminate moment sequence f : N0 → R there is a positive definite matrix sequence (an) which is not of positive type and which satisfies tr(an+2) = f(n), n ∈ N0. For a certain constant ε > 0 (a lit...

متن کامل

Solution of the Stieltjes Truncated Moment Problem

The conditions of solvability and description of all solutions of the truncated Stieltjes moment problem are obtained using as the starting point earlier results on the Hamburger truncated moment problem. An algebraic algorithm for the explicit solution of both problems is proposed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004